Functional a Posteriori Error Estimation for Stationary Convection-diffusion Problems

نویسنده

  • M. EIGEL
چکیده

A functional type a posteriori error estimator for the finite element discretisation of the stationary reaction-convection-diffusion equation is derived. In case of dominant convection, the solution for this class of problems typically exhibits boundary layers and shock-front like areas with steep gradients. This renders the accurate numerical solution very demanding and appropriate techniques for the adaptive resolution of regions with large approximation errors are crucial. Functional error estimators as derived here contain no mesh-dependent constants and provide guaranteed error bounds for any conforming approximation. To evaluate the error estimator, a minimisation problem is solved which does not require any Galerkin orthogonality or any specific properties of the employed approximation space. Based on a set of numerical examples, we assess the performance of the new estimator and compare it with some common a posteriori error estimators often used in practice. It is observed that the new estimator is robust and exhibits a good efficiency also with convection-dominated problem settings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to a posteriori error estimation for convection-diffusion problems. I. Getting started

A new a posteriori error estimation technique is applied to the stationary convection-reaction-diffusion equation. In order to estimate the approximation error in the usual energy norm, the underlying bilinear form is decomposed into a computable integral and two other terms which can be estimated from above using elementary tools of functional analysis. Two auxiliary parameter-functions are in...

متن کامل

Adaptive Streamline Diffusion Finite Element Methods for Stationary Convection-diffusion Problems

Adaptive finite element methods for stationary convectiondiffusion problems are designed and analyzed. The underlying discretization scheme is the Shock-capturing Streamline Diffusion method. The adaptive algorithms proposed are based on a posteriori error estimates for this method leading to reliable methods in the sense that the desired error control is guaranteed. A priori error estimates ar...

متن کامل

A posteriori error estimation of residual type for anisotropic diffusion-convection-reaction problems

This paper presents an a posteriori residual error estimator for diffusion– convection–reaction problems with anisotropic diffusion, approximated by a SUPG finite element method on isotropic or anisotropic meshes in Rd, d = 2 or 3. The equivalence between the energy norm of the error and the residual error estimator is proved. Numerical tests confirm the theoretical results.

متن کامل

Global and Localised A Posteriori Error Analysis in the maximum norm for finite element approx- imations of a convection-diffusion problem

We analyse nite element approximations of a stationary convection-diiusion problem. We prove global and localised a posteriori error estimates in the maximum norm. For the discretisation we use the Streamline Diiusion method.

متن کامل

A robust a-posteriori error estimate for hp-adaptive DG methods for convection-diffusion equations

We derive a robust a-posteriori error estimate for hp-adaptive discontinuous Galerkin (DG) discretizations of stationary convection-diffusion equations. We consider 1-irregular meshes consisting of parallelograms. The estimate yields global upper and lower bounds of the errors measured in terms of the natural energy norm associated with the diffusion and a semi-norm associated with the convecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012